برق-قدرت

برق-قدرت

اینجا فقط از برق و الکترونیک و کامپیوتر حرف می زنیم
برق-قدرت

برق-قدرت

اینجا فقط از برق و الکترونیک و کامپیوتر حرف می زنیم

ترانسفورماتورهای اصلاح شده بر اساس کی فاکتور

https://s18.picofile.com/file/8440412626/0222.jpg

رضاکیانی موحد

با نفوذ گسترده ی قطعات الکترونیک قدرت (دیودها، تریستورها و غیره) در دستگاه ها و تجهیزات صنعتی، افزایش هارمونیک های تزریق شده توسط این قطعات به شبکه ی قدرت به یکی از مشکلات عمده ی شرکتهای توزیع انرژی الکتریکی تبدیل شده است.

هارمونیکها اثرات نامطلوبی بر روی شبکه و مصرف کنندگان دارند که از جمله ی آنها می توان به گرم کردن ترانسفورماتورها اشاره کرد. هنگامی که ترانسفورماتوری یک بار غیرخطی (یو.پی.اس، چراغهای کم مصرف، راه اندازها و کنترل کننده های دور موتورهای الکتریکی و غیره) را تغذیه می کند هارمونیک ایجاد شده توسط بار غیرخطی سبب می شود که بهره بردار مجبور شود توانی کمتر از توان اسمی ترانسفورماتور از آن بکشد تا از داغ شدن بیش از حد و آسیب رسیدن به عایقهای سیم پیچ ها جلوگیری کند. جریانهای ناشی از هارمونیکها سبب می شود که تلفات ترانسفورماتور بالا رفته و حرارتی بیش از حد لازم تولید شود. به همین دلیل و به منظور تصحیح توانی که می توان از یک ترانسفورماتور در حالتی که بارهای غیرخطی را تغذیه می کند گرفت، عاملی به نام K تعریف شده است. کی فاکتور را می توان به عنوان وزن جریانهای هارمونیک تعریف کرد. اگر یک بار خطی توسط ترانسفورماتور تغذیه شود کی فاکتور آن را برابر با یک تعریف می کنیم. هر چه بار غیرخطی جریانهای هارمونیک بیشتری بکشد، کی فاکتور آن بالاتر می رود. محاسبه ی کی فاکتور سبب می شود که مصرف کننده بتواند ترانسفورماتوری مناسبتر و با توانی بالاتر را برای مصارف خود سفارش بدهد.

برای محاسبه ی کی فاکتور در ابتدا باید جریانهای هارمونیک توسط دستگاه تحلیل کننده ی هارمونیک اندازه گیری شود. سپس جریانها به توان دو رسیده و پس از ضرب شدن در مربع هارمونیک این اعداد با هم جمع خواهند شد. به عنوان مثال اگر یک جریان دارای 10% جریان هارمونیک سوم، 5% جریان هارمونیک پنجم و 3 % جریان هارمونیک هفتم باشد کی فاکتور آن به صورت زیر محاسبه خواهدشد:


مقدار ضریب تصحیح که باید مصرف کننده در توان نامی ترانسفورماتور خود ضرب کند از روی اطلاعات سازنده ی ترانسفورماتور و بر اساس مقدار کی فاکتور محاسبه شده توسط مصرف کننده به دست می آید. برای مقاصد عملی باید کی فاکتور در یک دوره ی بلند مدت اندازه گیری شود و پس از آن نیز همواره پایش شود.

امروزه ،برای کمک کردن به خریداران در انتخاب ترانسفورماتور مناسب، بعضی از سازندگان ترانسفورماتور تولیداتشان را بر اساس کی فاکتور به بازار عرضه می کنند. این ترانسفورماتورهای جدید قادر به تحمل حرارت اضافی تولید شده توسط جریانهای هارمونیک هستند به شرطی که کی فاکتور مصرف کننده از مقداری که سازنده در نظر گرفته است بیشتر نشود. در این نوع ترانسفورماتورها مصرف کننده نیازی به استفاده از ضریب تصحیح برای کاهش توان خروجی ترانسفورماتور ندارد چرا که هدف از ساخت این گونه ترانسفورماتورها محاسبه ی کی فاکتور بارهای غیرخطی و ساخت ترانسفورماتوری مناسب برای آن می باشد. استفاده از ترانسفورماتورهای جدید اقتصادی تر از خریداری یک ترانسفورماتور معمولی ولی بزرگتر می باشد. ترانسفورماتورهای اصلاح شده بر اساس کی فاکتور برای کی فاکتورهای 4،9،13،20،30،40،50 ساخته می شوند.

علاوه بر صرفه ی اقتصادی، استفاده از ترانسفورماتورهای اصلاح شده بر اساس کی فاکتور مزیتهای دیگری نیز بر ترانسفورماتورهای عادی دارند. در صورت وجود جریانهای هارمونیک ،به دلیل اندازه ی بزرگتری که باید برای ترانسفورماتورهای عادی در نظر گرفت، سطح جریان اولیه نسبت به ثانویه باید بالاتر در نظر گرفته شود و اگر سطح حفاظت کاهش بیابد ممکن است که جریان هجومی ترانسفورماتور سبب تریپ دادن رله های اضافه جریان شود.

در جدول زیر انواع ترانسفورماتورهای اصلاح شده را بر اساس کی فاکتور بر حسب نوع بار و مقدار کی فاکتور ملاحظه می کنید:

بار

کی فاکتور

لامپ کم مصرف، یو.پی.اس با فیلتر هارمونیک، جوشکاری با قوس الکتریکی، کوره های القایی، پی.ال.سی و کنترل کننده های صنعتی

4

تجهیزات مخابراتی، یو.اس.پی بدون فیلتر، تجهیزات اتاق عمل، تجهیزات آزمایشگاهی، تجهیزات آموزشی

13

ابرکامپیوتر، راه انداز و کنترل کننده ی دور موتور، تجهیزات بیمارستانی

20

 

 

حفاظت ترانسفورماتور



https://s18.picofile.com/file/8440412626/0222.jpg


مترجم: مهندس رضا حاجی زاد

ترانسفورماتورها ،با اندازه و پیکربندی های متفاوتی که دارند، قلب  سیستمهای قدرت هستند. به عنوان یک جزء حیاتی و  گران قیمت سیستمهای قدرت، ترانسفورماتورها نقش مهمی را در تحویل قدرت بازی می کنند ویکپارچگی سیستم های قدرت بستگی به آنها دارد. به هرحال، ترانسفورماتورها محدودیتهایی دارند که رفتن به فراسوی آنها می تواند سبب از بین رفتن ترانسفورماتور یا کاهش عمر آن شود. اگر ترانسفورماتور دچار اشکال شود موقعیت سیستم وتجهیزات آن می توانند به خطر بیافتند، علاوه بر اینکه قطع  سرویس برای مشتری نمی تواند تحمل پذیر باشد. از آنجایی که تعمیر و جایگزینی ترانسفورماتور ها معمولا خیلی طول می کشد، بنابراین محدود کردن خطا در آنها می تواند بهترین روش برای جلوگیری از صدمه دیدن ترانسفورماتورمی باشد.

تاثیر اقتصادی یک ترانسفورماتور معیوب

1-    تاثیر مستقیم اقتصادی تعمیر یا جایگزین کردن ترانسفورماتور می باشد.

2-    تاثیر غیرمستقیم اقتصادی از دست دادن محصول می باشد.

شرایط عملکرد خطا همانند اضافه بار ترانسفورماتور، خطاها وغیره ، غالبا سبب معیوب شدن ترانسفورماتور می شوند و احتیاج به حفاظت ترانسفوماتور مانند حفاظت تحریک و حفاظت حرارتی را افزایش می دهد. افزایش شرایط غیرعادی که عبارتند از خطاها واضافه بارها ،که در یک ترانسفورماتور در حال کار کردن اتفاق می افتند، می توانند عمرمفید یک ترانسفورماتور را کاهش دهند. باید حفاظت مناسبی برای جداکردن سریع ترانسفوماتور از شبکه تحت چنین شرایطی فراهم باشد. کاربرد این نوع از حفاظت باید مدت زمان قطع را هنگامی که درترانسفورماتور خطایی ایجاد می شود کاهش دهد تا ریسک حوادث فاجعه بار و هزینه تعمیرات کاهش یابد.

خطا درترانسفورماتور

 خطر عیب در ترانسفورماتور دارای دو بعد می باشد: تعداد خطا و شدت خطا. اکثر خطاهای ترانسفورماتور نتیجه اشکال در عایقها هستند. این موارد شامل نقص یا معیوب بودن نصب، معیوب بودن عایق، اتصال کوتاه، و آسیبهای ناشی از ولتاژ ضربه ای (مانند صاعقه) می باشند.

خطاهای داخلی  ترانسفورماتور را  می توان طبقه بندی کرد

1-    خطاهای سیم پیچ که بیشتر در اثر اتصال کوتاه اتفاق می افتند( خطای چرخشی ،خطای فازبه فاز، فازبه زمین، خطای سیم باز) .

2-    خطای هسته (معیوب بودن عایق هسته، قطع شدن ورقه های ترانس).

3-    خطاهای ترمینالی (اتصالات آزاد، اتصال کوتاه).

4-    خطای تعویض تپ زیر بار یا تپ چنجر(مکانیکی ، الکتریکی ،اتصال کوتاه).

5-    عملکرد وضعیت غیرعادی( اضافه شار،اضافه ولتاژ، اضافه بار).

6-    خطاهای خارجی.

علل دیگری که باعث معیوب شدن ترانسفورماتور می شوند

اضافه بار: اگر بار ترانسفورماتورها از بار نامی  تجاوز کند در این صورت خطایی که به وجود می آید ناشی از اضافه بار می باشد.

ولتاژ هجومی خط: خطاهای ناشی از کلید زنی ، ولتاژهای سوزنی ،صاعقه ها، خطاهای خط، و دیگر عدم تعادل های انتقال و توزیع  که نیاز به مراقبت بیشتر دارند و باید از حفاظت ولتاژ ناگهانی یا محدود کننده سیم پیچ و مقاومت اتصال کوتاه در برابر آنها استفاده کرد.

اتصالات شل:  اتصالات شل، اتصال فلزات ناهمگون، درست نپیچیدن اتصالات پیچی وغیره می توانند همچنین ترانسفوماتور را به سمت خطا هدایت کنند.

آلوده شدن روغن: آلوده شدن روغن دراثر رسوب گل و لای ، باقیماندن کربن دراثر تخلیه الکتریکی و زیاد بودن رطوبت روغن اغلب می تواند سبب شود که در ترانسفورماتور خطا رخ دهد.

خطای طراحی کارخانه: همچنین این وضعیت شامل : آزاد شدن یا حمایت نشدن فاز ،شل بودن قفل و بستها، نامرغوب بودن جوش، مناسب نبودن عایق هسته، قوی بودن اتصال کوتاه،  و اشیا اضافی خارج از مخزن می شود.

تعمیر و نگهداری ناقص:  بهره برداری و نگهداری نامساعد یکی از علتهای اصلی خطا در ترانس می باشد. قطع شدن یا کنترل نامناسب ترانسفورماتور شامل تلفات خنک کنندگی ، جمع شدن گرد و خاک و روغن ،و فرسودگی می با شد.

عوامل بیرونی: چندین عامل خارجی مانند طغیان کردن ، آتش سوزی و انفجار، صاعقه و رطوبت می تواند باعث شود که خطا در ترانسفورماتور اتفاق بیافتد.

بهترین روش حفاظت ترانسفورماتور

با دقت در اندازه صحیح رساناها و تجهیزات، و حفاظت زمین کافی می توان باعث جلوگیری یا کمترشدن خرابی ها و به خطر افتادن ترانسفورماتور شد. نصب نادرست ترانسفوماتور می تواند باعث آتش سوزی در اثر حفاظت نادرست، به علاوه اضافه ولتاژ الکتریکی به دلیل نامناسب بودن  زمین شود.

·        زمانی که ترانسفوماتور نصب می شود، تانک روغن آن باید با یک سیم مناسب زمین شده باشد و زمین آن  به طور پایدار باشد.

·        راه دسترسی به ماده جمع شده در مخزن ترانسفورماتور درشرایطی که رطوبت یا باران زیاد است باید محدود باشد.

·        اگر رطوبت از 70% تجاوز کند هوای خشک باید به صورت پیوسته در داخل فضای گاز پمپ شود.

·        حفاظت معین ترانسفوماتور دربرابر باران باید طوری باشد که آب درون آن نفوذ نکند.

·        تجهیزاتی که در جابجایی مایع کاربرد دارند (ظرفها ، پمپ ها،و غیره) باید تمیز و خشک باشد. اگرمایع عایق شده برای بررسی بیرون کشیده شده است ،سطح روغن درون ترانسفورماتور نباید از بالای سیم پیچ ها کمتر شود.

·        هنگامی که ترانسفورماتور روغنی در فضای باز نصب می شود، فشار گاز کافی باید فراهم شود تا درون تانک روغن همیشه فشار مثبت 1 تا 2 پاسکال را داشته باشیم (حتی در درجه حرارت کم).

·        بررسی نهایی ترانسفورماتور قبل از اینکه برقدار شود ضروری است. همه اتصالات الکتریکی ،بوشینگها و غیره باید چک شود.

·        بمحض بارگرفتن از ترانسفوماتور مراقبت از دستگاه در هنگام ساعت بارگیری انجام شود. همه درجه حرارت ها وفشارها در مخزن ترانسفورماتور در مدت زمان نخستین هفته عملکرد باید چک شود.

·        برق گیرها باید نصب شود و اتصالات به بوشینگ و ترمینال های ترانسفورماتور با دستگاه تست اتصال کوتاه تست شود تا از دستگاه در برابر ضربه کلید زنی و صاعقه جلوگیری کند.

مایک دیکنسون


ملاحظات طراحی و ساخت ترانسفورماتورهای WTSU


https://s18.picofile.com/file/8440412626/0222.jpg

مایک دیکینسون

مقدمه

تبدیل انرژی باد به توان الکتریکی یکی از صنایعی است که با سرعت در حال رشد است. تنها در آمریکا، توان حاصله از نیروگاه های بادی در 5 سال به طور متوسط گذشته 29 درصد رشد کرده است و اکنون این انرژی بیش از یک درصد انرژی مورد نیاز این کشور را تأمین می کند.

مانند دیگر سیستمهای انتقال و پخش توان الکتریکی، ترانسفورماتورهای قدرت قلب تولید انرژی توسط نیروگاه های بادی هستند. طراحی اولیه یک ترانسفورماتور می تواند در سوددهی نیروگاه های بادی تأثیری به سزا داشته باشد و بنابر این فرض می شود که طراحی و ساخت ترانسفورماتورها ، به ویژه برای استفاده در نیروگاه های بادی شامل ترانسفورماتورهای افزاینده توربینهای بادی، اهمیتی حیاتی دارد.

با اینکه تکنولوژی تهیه انرژی از باد در چند سال گذشته بهبود بسیار یافته است، چند مشکل مهم در طراحی، کنترل و بهره برداری هنوزهم حل نشده باقی مانده اند. اگر این موارد به صورتی شایسته در زمان صحیح عنوان نشوند، ممکن است که موجب اختلال های زیادی در سیستم ،به ویژه هنگامی که نیروگاه به شبکه سراسری متصل می شود، بشوند.

توربین بادی

توربین بادی نشانه ای برجسته از بازار بزرگ انرژی های قابل تجدید می باشد. باد پره های توربین را می چرخاند، که آن هم محور یک ژنراتور را به حرکت در می آورد و برق تولید می کند. یک ترانسفورماتور محلی برای افزایش ولتاژ تولید شده لازم است تا برق از طریق خطوط انتقال و توزیع به مصرف کننده عمومی انتقال یابد. این توربینها عموما هنگامی که سرعت باد در حدود 8 مایل بر ساعت یا بیشتر است برق تولید می کنند. هنگامی که سرعت باد از 55-60 مایل بر ساعت بیشتر می شود این توربینها به دلایل امنیتی خاموش می شوند. توربینهای بادی مدرن معمولا از یک روتور و 3 پره بلند استفاده می کند که قطری بین 40 تا 80 متر دارند تا بتوانند بیشترین انرژی ممکن را از باد دریافت کنند. پره ها را در زوایای مختلف قرار می دهند تا بتوانند خود را با سرعتهای مختلف باد هماهنگ کنند، و ژنراتور و پره های می توانند برای قرارگرفتن در جهت صحیح باد بچرخند. توربین های بادی بر روی برجهایی با ارتفاع 40 تا 100 متر نصب می گردند تا بتوانند از باد قدرت بگیرند. این توربینها در اندازه های مختلف ساخته می شوند و می توانند در تأسیسات بزرگ و کوچک به کار گرفته شوند. یک توربین کوچک ،با توانی در حدود 300 کیلووات، را می توان برای مصارف گوناگونی چون شارژ باتری، برق رسانی به خانه های موقت، ایستگاه های تلفن سیار، مزارع یا کارخانه ها بکار گرفت. توربینهای بکارگرفته شده در نیروگاه های بادی ممکن است که با ظرفیت 500 کیلووات با بیشتر باشند. این توربینها اغلب در مزارع بادی یا نیروگاه های بادی برای تغذیه برق شبکه کنارهم نصب می شوند. با نصب یک مزرعه بادی امکان دارد تا برق به صورت اقتصادی تری و با ظرفیت بیشتر تولید شود. این امر همچنین تعمیرات و بهره برداری از آنها را مقرون به صروف می سازد.

چرا ترانسفورماتورهای افزاینده؟

یک ترانسفورماتور افزاینده جهت توربین بادی (WTSU) نقشی حیاتی در تبدیل سطح ولتاژ خروجی توربین به سطح انتقال و عبور از شبکه های انتقال تا رسیدن به مصرف کننده بازی می کند. ولتاژ خروجی توربینهای بادی نوعا بین 480 تا 690 ولت است. این ولتاژ به ترانسفورماتور WTSU داده میشود و به ولتاژی بین 13.8 تا 46 کیلوولت تبدیل می شود. نقش این ترانسفورماتورهای حیاتی است  و لازم است که طرحی قوی داشته باشند. ترانسفورماتورهای امروی باید از پس نیازهای مختلفی چون مسائل زیر برآیند:

  • بارهای گوناگون و مختلف.
  • بارهای دارای هارمونی و غیرسینوسی تولید شده توسط عناصر کنترلی الکترونیک و ژنراتورها.
  • حفاظت در برابر ولتاژ بالا/پایین یا اضافه بار.
  • توانایی تحمل جریانهای گذارا و خطاها.

نیاز به طراحی مخصوص و ملاحظات ساخت

محلهای دارای باد مناسب اغلب در مکانهای دورافتاده هستند و مقادیر مختلفی از انرژی را دریافت می کنند. این عوامل باد را به یک منبع انرژی به شدت دارای نوسان تبدیل کرده است که خروجی آن می تواند تا 25 درصد بازی کند. در حدود 10 درصد از زمان کار توربین، باد می تواند توربین را با 5 تا 20 درصد ظرفیت نامی اش به حرکت درآورد. این تغییرات می تواند تأثیر منفی بر روی شبکه بگذارد. ترانسفورماتورهای توزیع و ترانسفورماتورهای قدرت معمولا در حوالی بار کامل خود بکارگرفته می شوند. این چنین است که فشارهای حرارتی بر روی عایقهای این نوع ترانسفورماتورها  طبیعتا بیشتر می شود. ترانسفورماتورهای WTSU دچار چنین اشکالی نمی شوند اما بار متغیر آنها مشکلات دیگری را برایشان ایجاد می کند مانند:

تلفات هسته

تلفات هسته می تواند به صورت یک عامل مهم اقتصادی در زمانی که ترانسفورماتورها بی بار هستند یا بارکمی دارند درآید. استفاده از ترانسفورماتور با 30 تا 35 درصد بار کامل فرمولهای معمولی تخمین قیمت را به هم می ریزد.

نوسانات حرارتی

کم و زیاد شدن بار فشار حرارتی زیادی را به سیم پیچهای ترانسفورماتور، سازه های نگهدارنده، درزگیرها و نشت بندها وارد می کند. همچنین، نوسانات حرارتی موجب ایجاد گاز نیتروژن در روغن ترانسفورماتور شده که در زمان خنک شدن روغن به صورت حباب در آمده و در اطراف عایقها و سیم پیچها تجمع می کنند که سبب تخلیه جزئی و خراب شدن عایقها می شوند. ترانسفورماتورهای توزیع و قدرت نمی توانند با این مشکل به خوبی رویاروی شوند و حوادث ناشی از عایقها در آنها دیده می شود.

راه حل: ترانسفورماتورها سفارشی ساخته شوند

یک ترانسفورماتور سفارشی برای نیروگاه بادی می تواند از ابتدا با در نظر گرفتن مشکلات خاص این نیروگاه ها طراحی شود. استفاده از هسته های صلیبی شکل، سیم پیچ ها و سازه ی قوی تر، درزگیرها و نشت بندهای مخصوص و ابزارهای حفاظتی که از ایجاد نقاط داغ و در نتیجه تخلیه جزئی جلوگیری می کنند می توانند سبب افزایش طول عمر ترانسفورماتور و بهبود کارایی آن شوند.

مانند بیشتر ترانسفورماتورهای یکسوساز، ترانسفورماتورهای WTSU باید برای مقابله با هارمونیها و اضافه بار طراحی شوند تا از انتقال هارمونی ها بین اولیه و ثانویه ترانسفورماتور جلوگیری کنند.

مترجم رضا کیانی موحد

منبع

http://ezinearticles.com/?Design-and-Construction-Considerations-For-WTSU-Transformers&id=3529140

کمبودهایی در استانداردهای حفاظتی تولید پراکنده ؛قسمت دوم

https://s18.picofile.com/file/8440412626/0222.jpg

قسمت اول

چارلز جی. موزینا از شرکت بکویث الکتریک 

مترجم رضاکیانی موحد

 

مشکل اول

ناکافی بودن یک دستورالعمل عمومی برای زمین کردن ترانسفورماتورهای اتصال به شبکه.

استانداردها پیچیده بودن پی آمدهای ناشی از اضافه ولتاژهایی که به دلیل زمین کردن ترانسفورماتورهای اتصال نیروگاه محلی به شبکه سراسری ایجاد می شوند را چنین توضیح می دهد: " الگوی زمین کردن ترانسفورماتور اتصال به شبکه نباید به گونه ای باشد که اضافه ولتاژها از ولتاژ نامی تجهیزات شبکه بیشتر شوند و یا هماهنگی رله های حفاظتی را از بین ببرند." فقدان جزئیات اجرایی، یک نقطه ضعف اساسی در استانداردها محسوب می شود. شبکه و نیروگاه محلی بیشتر از دو گزینه برای سیم پیچ اولیه ترانسفورماتورهای اتصال ندارند؛ اولیه زمین شده یا اولیه زمین نشده.

الف)سیم پیچ اولیه زمین نشده.

بزرگترین نگرانی از اتصال ترانفسورماتور با سیم پیچ زمین نشده در این است که هنگامی که فیدر A (تصویر 2) به دلیل اتصال کوتاه در محل F1 تریپ می دهد تمامی سیستم بدون زمین می شود. این موضوع در ترانسفورماتورهای هوایی و برقگیرهای متصل به آنها اضافه ولتاژی در فازهایی که بدون اشکال بوده اند ایجاد می کند که می تواند به ولتاژ خط به خط نزدیک باشد. این وضعیت هنگامی بدتر می شود که در زمان تریپ دادن فیدر A توان خروجی ژنراتورهای نیروگاه محلی نزدیک به بار فیدر باشند. در نتیجه این اضافه ولتاژ سبب می شود که ترانسفورماتورهای هوایی ، که به صورت معمولی در پاشنه منحنی اشباع هستند، به سرعت به ناحیه اشباع بروند.

بسیاری از شبکه ها تنها زمانی از ترانسفورماتورهای بدون اتصال زمین استفاده می کنند که در زمان تریپ دادن فیدر A 200% یا بیشتر اضافه بار برای نیروگاه محلی اتفاق بیافتد. در طی اتصال زمین یک فاز، این اضافه بار به ولتاژ فازهای دیگر اجازه نمی دهد که از ولتاژ فاز به نول نامی شبکه خیلی بیشتر شوند و از به اشباع رفتن ترانسفورماتورهای هوایی جلوگیری می کند. به همین دلیل، سیم پیچ اولیه زمین نشده معمولا برای تولید کننده های کوچک ،جایی که اضافه بارها دست کم 200% مقدار مورد انتظار هستند، اختصاص داده می شود.

ب)سیم پیچ اولیه زمین شده.


 این انتخاب دو نقطه ضعف عمده دارد: اول اینکه یک جریان زمین ناخواسته تولید می کند که برای تغذیه مدارات حفاظت زمین مشکل ایجاد می کند و دوم اینکه جریانی که از فیدر A می گذرد را کاهش می دهد. این امر ممکن است که هماهنگی بین رله ها را از بین ببرد. موارد زیر را در نظر بگیرید:

  • ·   اگر محل خطای اتصال به زمین دور از فیدر باشد کاهش جریان اتصال کوتاه ممکن است که از عمل کردن رله پست توزیع جلوگیری کند. در این صورت، شبکه سراسری ناچار است تا برای کشف خطاهای دور از فیدر از وصل مجدد خودکار استفاده کند.

    ·   اگر شبکه برای حفاظت از فیوز استفاده کند کم شدن جریان منبع و افزایش جریان فیوز به همین نتیجه منفی منتهی می شود: از بین رفتن هماهنگی بین رله های حفاظتی.

    ·   اگر اتصال کوتاه به زمین در نزدیکی فیدر اتفاق بیافتد (نقطه F2 در تصویر2) جریان زمینی که از باسهای پست توزیع عبور می کند می تواند هماهنگی رله ها را از بین ببرد و سبب قطع ناخواسته بریکر A بشود. برای اجتناب از این وضعیت، ممکن است تا ناچار شویم در بریکر A از رله های جریان بالا جهت دار استفاده کنیم که در این صورت این رله ها تنها به خطاهای اتفاق افتاده در فیدرA پاسخ خواهند داد.

1-اتصال ستاره(اولیه)/ مثلث (ثانویه) ترانسفورماتور اتصال با ستاره زمین شده.

برای استفاده از این اتصال لازم است به خاطر داشته باشیم که حتی اگر هنگامی که نیروگاه محلی خاموش است (بریکرهای ژنراتور بازهستند)، اگر ترانسفورماتور اتصال به شبکه وصل باشد ممکن است تا جریان خطای زمین در شبکه ایجاد شود. این امر عادی است چرا که نوعا حفاظت اتصال به شبکه، بریکر ژنراتور را تریپ می دهند. ترانسفورماتورهای پخش شده در نیروگاه محلی (برای مصرف کننده های داخلی) مانند یک ترانسفورماتور زمین با جریان توالی صفر که در سیم پیچ های مثلث شده ثانویه می چرخند عمل می کنند. علاوه بر این مشکلات، بارهای نامتقارن ،که مقدم بر ترانسفورماتور اتصال به شبکه هستند، از طریق زمین این ترانسفورماتور به زمین بازمی گردند و این در حالی است که زمینهای بین ترانسفورماتورهای مصرف محلی و ترانسفورماتور اتصال به شبکه از همدیگر جدا شده اند. این امر می تواند ظرفیت تغذیه بارها را برای ترانسفورماتورهای محلی کاهش دهد و هنگامی که جریان تغذیه فازها به دلیل عملکرد وسایل حفاظتی مانند فیوزها و وصل مجدد خودکار غیرمتعادل می شود مشکل ساز شود. اگر چه اتصال ستاره زمین شده/ مثلث به صورت عمومی برای اتصال ژنراتورهای بزرگ به شبکه سراسری مورد استفاده قرار می گیرند زمانی که برای پخش از روشهای چهار سیمه استفاده کنیم می توانند مشکلات عدیده ای ایجاد کنند.

2-اتصال ستاره(اولیه)/ ستاره (ثانویه) ترانسفورماتور اتصال به شبکه با نقطه نول زمین شده برای هر دو طرف.

بزرگترین نگرانی در هنگام استفاده از اتصال ترانسفورماتور اتصال به شبکه با اولیه و ثانویه ستاره زمین شده نیز ایجاد یک جریان زمین ناخواسته برای رله های شبکه ،مانند آنچه در بخش قبل توضیح دادیم، می باشد. این امر حساسیت رله های پست توزیع را برای پاسخ به خطای اتصال زمین در ثانویه ترانسفورماتور نیروگاه محلی (نقطه F3 در تصویر2) را بالاتر می برد. این امر می تواند سبب شود تا شبکه ناچار جریان نمونه گیری برای رله هایش را افزایش دهد یا برای ایجاد هماهنگی بین رله ها یک تأخیر زمانی درنظر بگیرد. کاهش حساسیت و یا سرعت پاسخ رله ها ممکن است که در هنگام اتصال کوتاه سبب آسیب دیدن خود فیدر شود.

مشکل دوم

عدم توجه به تشدید آهنی (تشدید غیرخطی یا ferroresonance)

پدیده خود تحریکی ژنراتورهای القایی سالها است که شناخته شده است. این امر زمانی اتفاق می افتد که یک ژنراتور ایزوله به وسیله یک خازن هم اندازه یا بزرگتر از رآکتانس مورد نیاز به یک سیستم وصل می شود. بسته به به اندازه خازن و توان مصرف کننده ها ممکن است که ولتاژ ژنراتور به 1.5 تا 2 برابر مقدار نامی برسد.

ترکیب مشکل ژنراتورهای ایزوله با سیستمهای توزیع دارای بانک خازنی ممکن است که سبب پدیده بی مانندی تشدید آهنی شود که در ژنراتور القایی اتفاق نمی افتد ولی در ماشین های سنکرون ممکن است بوجود آید. ممکن است که ولتاژ تا 3 پریونیت افزایش پیداکند. شارژ و دشارژ خازن از طریق سیم پیچهای غیرخطی ترانسفورماتور اتصال به شبکه این ولتاژ اضافی را ایجاد می کند.

این تشدید با تشدید آهنی معمولی که به دلیل سوئچینگ در شرایط بارهای غیرمتعادل ایجاد می شود تفاوت دارد. اگر تمام شرایط زیر برقرار باشند تشدید آهنی ممکن است روی دهد:

  • ·        ژنراتور محلی باید از شبکه سراسری جدا (ایزوله) باشد.

    ·        بار مصرف داخلی باید از یک سوم توان نامی ژنراتور کمتر باشد.

    ·        ظرفیت سیستم باید بیشتر از 25 درصد و کمتر از 500 درصد توان نامی ژنراتور باشد.

    ·        یک ترانسفورماتور باید وجود داشته باشد که شرایط غیرخطی را فراهم کند.

اما چنین اضافه ولتاژی را چگونه می توان کاهش داد؟ مطالعات نشان می دهند که ژنراتورهای القایی و سنکرون و تمام ترانسفورماتورهای اتصال استعداد دارند در این چرخه بحرانی وارد شوند. برقگیرها پیک موج ولتاژ را خواهند گرفت اما آنها نمی توانند تشدید آهنی را متوقف کنند و ممکن است که آسیب ببینند. برقگیرهای متال-اکساید ممکن است که شانس بیشتری برای نجات داشته باشند. بهترین راه حل عملی در این موارد تریپ دادن ژنراتور برای از بین بردن منبع ولتاژ ناخواسته است. البته تریپ دادن ژنراتور در عمل به سادگی گفتن آن نیست چرا که موج ولتاژ این تشدید غیرسینوسی است و بیشتر رله های دیجیتال امروزی تنها می توانند اضافه ولتاژهای سینوسی 50 یا 60 هرتز را تشخیص دهند. یک شرکت سازنده رله به این مشکل اشاره کرده اگرچه یک رله اضافه ولتاژ (رله I 59) وظیفه حفاظت در برابر پیک اضافه ولتاژ را برعهده دارد. 

منبع: 

http://www.powermag.com/instrumentation_and_controls/DG-interconnection-standards-remain-elusive_351_p2.html