برق-قدرت

برق-قدرت

اینجا فقط از برق و الکترونیک و کامپیوتر حرف می زنیم
برق-قدرت

برق-قدرت

اینجا فقط از برق و الکترونیک و کامپیوتر حرف می زنیم

میکرو توربین یک تکنولوژی به بلوغ رسیده،قسمت دوم


https://s18.picofile.com/file/8440412626/0222.jpg

قسمت اول

میکروتوربینها نیاز اتصال به شبکه های مختلف را پوشش می دهد

بعضی از مناطق جهان اتصال شبکه به ژنراتورهای سنکرون سنتی را به خاطر تزریق خطای جریان آنها در شکبه های توزیع محدود کرده اند. بیشتر میکروتوربینها از قطعات الکترونیک قدرت به همراه کنترل کننده های دیجیتال بهره می گیرند. این روش به آنها اجازه می دهد تا شبکه هایی که توسط رله های حفاظتی پوشش داده شده اند ،از جمله آنها که محدودیت جریان در شرایط خطای آنها وجود دارد، با میکروتوربینها یکپارچه شوند.

بیشتر میکروتوربینها از قطعات الکترونیک قدرت برای تبدیل خروجی با فرکانس بالای خود به فرکانس 50 یا 60 هرتز و ولتاژ 400 تا 489 ولت 3 فاز متناوب،مناسب برای مصرف کننده ها، استفاده می کنند. ولتاژ متناوب فرکانس بالای توربوژنراتورها در ابتدا وارد یک اینورتر می شود و به ولتاژ مستقیم تبدیل می شود. یک اینورتر دوم از ولتاژ این باس جریان مستقیم داخلی استفاده می کند و ولتاژ متناوبی با فرکانس مناسب ایجاد می کند. این خروجی برای رعایت استاندارد IEEE 519 درباره ی هارمونیکها فیلتر می شود.

یکی از مزایای این گونه میکروتوربینها در این است که خروجی اینورتر حفاظت شده  است و بنابراین نیاز چندانی به تجهیزات اضافی حفاظتی برای اتصال به شبکه های محلی نمی باشد.

میکروتوربینها یکپارچه سازی سیستمها را امکان پذیر می کنند

واحدهای متفاوت می توانند به یک میکروشبکه وصل شوند که مزایای زیادی را برای صاحبان آنها به همراه دارد. یک کنترل کننده ی قدرت شبکه می تواند ژنراتورهای مختلف را برای سنکرون کردن خروجی آنها مدیریت کند، توان خروجی آنها را بری رسیدن به بهترین بازده تنظیم کند و یک ژنراتور را آماده بکار نگه دارد تا شبکه بتواند در برابر تغییرات بار ناگهانی واکنش نشان دهد. نتیجه، یک پکیج منفرد "مجازی" است که می تواند مانند یک سیستم یکپارچه با فرکانس واحد و مشخصه های کنترل شده عمل کند.

یکی از مزایای چنین سیستم یکپارچه ای در این است که ماجولهای قدرت می توانند روشن یا خاموش شوند تا بازده بارگذاری پله ای بر روی شبکه بهینه شود. این مشخصه می تواند هنگامی که انتظار می رود بارهای شبکه در طی کارکرد متغیر باشند یا در جایی که شرایط اولیه ی نصب بر اساس رشد بار در آینده لحاظ شده باشد ارزشمند باشد. این گونه شبکه ها همچنین می توانند برای مدیریت اوج بار نیز سودمندباشند. در تصویر4 بازده بارپله ای 5 دستگاه میکروتوربین 200 کیلووات موازی با هم در مقایسه با یک توربین بزرگ به نمایش درآمده است. منطقه ی بین دو منحنی نشانگر سوخت صرفه جویی شده می باشد.

 


This figure illustrates the part-load efficiency of a series of five 200-kW microturbine modules functioning in tandem compared with using a single, larger turbine

تصویر4- نمودار بازده-توان یک میکروتوربین 200 کیلووات در مقایسه با یک توربین معمولی بزرگ. ناحیه ی بین دو منحنی میزان انرژی صرفه جویی شده را نشان می دهد

همچنین توانایی سنکرون کردن خودکار توان خروجی با یک شبکه یا بین چند میکروتوربین می تواند در کنترل کننده های میکروتوربینها نیز یکپارچه شود. این مشخصه هماهنگی بین نیروگاه ها مختلف را ساده تر می کند و اجازه می دهد تا توان چند دستگاه میکروتوربین در یک پیکیج یکپارچه شود.

میکروتوربینها یک منبع توان مطمئن را فراهم می کنند


میکروتوربینها می توانند به صورت دائم برای مدتی طولانی و با کمترین قطعی برای تعمیرات کاربکنند. آنها همچنین کاملا قابل اعتمادند و مناسب برای مشتریانی که نیاز به یک منبع همیشه در دسترس و مطمئن توان دارند. کپستون در رسیدن به این خصوصیات پیشتاز است و همراه با توانایی که در زمینه الکترونیک قدرت و ساخت یو.پی.اس دارد سیستم تولید انرژی خود را "یو.پی.اس دورگه" نامیده است.

این سیستم شامل دو اینورتر جداگانه است که ال.سی.ام-1 و ال.سی.ام-2 نام دارد. ال.سی.ام-2 به عنوان یک اینورتر اتصا به شبکه عمل می کند و شامل رله های حفاظتی یکپارچه است که برای اتصال میکروتوربین به شبکه مورد نیازهستند. همچنین ال.سی.ام-1 یک اینورتر دو طرفه است که به اجازه می دهد توان از شبکه کشیده شده یا به شبکه تزریق شود. ال.سی.ام-2 یک اینورتور مستقل است، بدین معنی که علی رغم اینکه ولتاژ باس شبکه چه باشد ولتاژ لازم برای بارهای حیاتی را تهیه می کند. در داخل یو.پی.اس دورگه یک باس جریان مستقیم وجود دارد که ال.سی.ام-1 و ال.سی.ام-2 را به هم وصل می کند و اجازه می دهد که توان از میکروتوربین و باتریهای خارجی سیستم ذخیره وارد شود.

در وضعیت یو.پی.اس توان از شبکه کشیده شده و توسط ال.سی.ام-1 به باس دی.سی تزریق شده و از طریق ال.سی.ام-2 به بارهای حیاتی تحویل داده می شود. این روش همانی است که در یک یو.پی.اس سنتی دو طرفه اعمال می شود. به هرحال، یو.پی.اس دورگه وضعیت بهره برداری اضافه ای نیز دارد که به نام "وضعیت بازده بالا" معروف است. در این وضعیت بهره برداری میکروتوربین روشن بوده و توان باس AC را از طریق ال.سی.ام-2 تأمین می کند. نوعا، این میکروتوربین قسمتی از یک سیستم CHP یا CCHP نیز می باشد که توانی با بازده بالا ایجاد می کند که می تواند نیازهای مصرف کننده به انرژی حرارتی را کاهش دهد. این سیستمها به بالاترین بازده می رسند و بنابراین هنگامی که نیازهای حرارتی یک سیستم CHP یا CCHP را تأمین می کنند، بهترین جبران کننده ی اقتصادی هستند.

طرح یو.پی.اس دو رگه تأمین بارهای حرارتی را اجازه می دهد و نیاز ندارد که میکروتوربین همان حجم توان مورد نیاز بارهای حیاتی شبکه را تولید کند. این امر بدین خاطر است که ال.سی.ام-1 به توان اجازه می دهد که از قسمتهای غیرحیاتی شبکه ی توزیع برداشته بشود و یا توان را به گونه ای که برای تأمین نیازمندی های بارهای حیاتی لازم است به سمت خود بکشد.

سومین وضعیت بهره برداری"وضعیت اضطراری" است که در آن میکروتوربین یا باتری های ذخیره ی خارجی می توانند بارهای حیاتی را در زمانی که شبکه از دست می رود تأمین کنند. تغییر وضعیت بین تمامی وضعیت های ذکر شده بدون وقفه است، بنابراین بارهای حیاتی نوسانی در ولتاژ ،که به مراکز حساس ذخیره ی اطلاعات یا تجهیزات مخابراتی آسیب می زنند، نخواهند داشت.

 

میکرو توربین یک تکنولوژی به بلوغ رسیده،قسمت اول



https://s18.picofile.com/file/8440412626/0222.jpg

استفان ژیلت معاون مدیرعامل شرکت کپستون


مترجم: رضا کیانی موحد

میکروتوربینهای امروزی با توان 200 تا 250 کیلووات تکامل یافته ی میکروتوربینهای اولیه با توان 30 تا 70 کیلووات هستند. امروزه پکیجهایی با توان 1 مگاوات ساخته شده اند که می توان توسط آنها واحدهای تولید نیرو به توان 5 تا 10 مگاوات را راه اندازی کرد. این پکیجهای با سیستمهای حفاظتی دیجیتال، سنکرونیزم، تجهیزات کنترلی به صورت یکپارچه عرضه می شوند و دارای بازده حرارتی و الکتریکی بالایی هستند و می توانند با انواع سوخت ها کار بکنند.

میکروتوربینها یک تکنولوژی نسبتا جدید در حوزه ی تولید انرژی هستند. بنابراین سوالات خریداران بالقوه، مهندسین، تولید کنندگان قطعات و سازمانهای دولتی درباره ی کارآیی آنها و تفاوت آنها با روشهای سنتی تولید برق نباید غافلگیرکننده باشد. در این مقاله برای پاسخ به این سوالات مشخصات اصلی میکروتوربینها توضیح داده شده اند و چند مثال از اینکه چگونه آنها در دنیای واقعی به کار برده می شوند آورده شده است.

 A 65-kW Capstone C65 microturbine equipped with integrated heat recovery is inspected by a technician

1- بازدید ساده: یک میکروتوربین 65 کیلووات کپستون در حال بازدید توسط متخصصین فنی

 

ساختمان نوعی یک میکروتوربین

میکروتوربینها یک نوع ساده از توربینهای گازی هستند که دارای یک کمپرسور محوری و توربین بوده و اغلب هر کدام دارای یک طبقه می باشند. آنها نوعا از انرژی گازهای خروجی برای پیش گرم کردن هوای ورودی استفاده می کنند تا در مقایسه با یک ماشین حرارتی معمولی بازده الکتریکی بالاتری داشته باشند. مبدل حرارتی هوا-هوا به نام "بهبوددهنده" نامیده می شود و تمامی سیستم نوعا یک سیکل بهبودداده شده نام دارد.

تصویر2 یک نمای برش خورده از داخل یک میکروتوربین 65 کیلووات کپستون و اجزای داخلی آن را نشان می دهد. این مجموعه اغلب یک "توربوژنراتور" نامیده می شود چرا که میکروتوربین به یک ژنراتور وصل شده است. شفت توربین، کمپرسور و ژنراتور با سرعت 96000 دور/دقیقه می چرخند. بنابراین خروجی ژنراتور یک موج سینوسی فرکانس بالا است که باید برای تبدیل به فرکانس برق شهر (50 یا 60 هرتز) از فرکانس خروجی کاسته شود.

 cutaway view of a Capstone C65 turbogenerator illustrates the arrangement of all the gas turbine components, including the generator

2- نمای داخلی یک توربوژنراتور کپستون.  هوای محیط در کمپرسور فشرده می شود، سوخت در محفظه ی احتراق به آن تزریق شده و با سوخت آن درجه حرارت هوا بالامی رود. گازهای پرفشار خروجی از توربین می گذرند و گشتاور خروجی را ایجاد می کنند. مبدل حرارتی حرارت گازهای خروجی را برای گرم کردن هوای ورودی بکار می برد تا مصرف سوخت کم شود و بازده بالا برود.

میکروتوربینها در مقایسه با توربینهای گازی متعارف با اندازه ی برابر بازده الکتریکی بالاتری دارند. بهبود دهنده ،که مقداری از انرژی گازهای خروجی را دوباره به پروسه ی تولید گازهای داغ بازمی گرداند، بازده آن را بالا می برد. تصویر 3 مشخصات چند میکروتوربین رقیب موجود در بازار و چند توربین گازی معمولی بزرگتر را نشان می دهد. توجه کنید که میکروتوربینها تا حدود 5 مگاوات بازده بالاتری دارند ،که تقریبا هم اندازه ی اولین توربین گازی معمولی استفاده کننده از بهبود دهنده(توربین سولار مدل مرکوری) می باشد.

 electrical efficiency of the competitive offerings in the microturbine size range

3- مقایسه ی بازده: بازده الکتریکی چند توربین و میکروتوربین موجود در بازار

 

به هرحال، بازده بالا(20 تا 30 درصد) همیشه دلیل کافی اقتصادی برای سرمایه گذاری جدید در کاربردهای تجاری ،جایی که سوختهای متعارف خریداری می شوند و هزینه ی تولید باید با توان تولید شده مقایسه شود، نیست. مزیت میکروتوربینها در تولید همزمان گرما و انرژی   (CHP)یا تولید همزمان سرما،گرما و انرژی (CCHP)  ،جایی که گرمای خروجی بازیافت شده و دوباره استفاده می شود، می باشد.

ارزش اولیه میکروتوربینها برای بیشتر خریداران توانایی آنها برای کاهش هزینه ی تولید انرژی است. علاوه بر استفاده از روشهای تحلیل سرمایه ی استاندارد برای تخمین هزینه ها، میکروتوربینها اغلب برای مشوقهای مالی حکومتی ،هنگامی که از سوختهای تجدیدپذیر استفاده می کنند،  مطلوب هستند. همچنین بسیاری از کشورها برنامه های تخفیفی برانگیزنده ای برای تحریک خریداران به روشهای تولید انرژی پاک و با بازده بالا درنظرگرفته اند.

اگرچه یک بازگشت سرمایه ی جذاب همیشه برای جلب توجه خریداران لازم است اما ،همانطور که در زیر ملاحظه خواهید کرد، چند تولید کننده ی مطرح بازار چگونگی گسترش سریع میکروتوربینها را شرح خواهند داد.

میکروتوربینها محدودیتهای آلودگی هوا را رعایت می کنند

هر روزه کشورهای بیشتری درباره ی کنترل آلودگی هوا قوانین سختگیرانه تری ،مانند سطوح آلودگی هوا که توسط هیئت مدیره ی منابع هوای کالیفرنیا (CARB) تصویب شد، وضع می کنند. این امر بدان معنی است که روشهای تولید جایگزین مانند ژنراتورهایی با موتور جبران کننده، اغلب باید فیلترهایی در اگزوز خود نصب کنند. چند کارخانه ی ساخت میکروتوربین با قوانین کالیفرنیا خود را تطبیق داده اند بدون اینکه از فیلترهای اکتیو در خروجی گازها استفاده کنند که صرفه جویی زیادی را برای خریدار در برداشته است.

یکی از مزایای میکروتوربینها ظرفیت آنها برای رسیدن به سطوح بالای استانداردهای آلودگی هوا است. اتکاء بر اختلاط مواد سوختی قبل از ورود به مرحله ی احتراق مقدار خروجی اکسیدهای نیتروژن، مونوکسیدکربن و هیدروکربنهای نسوخته را ،که اغلب با گازهای ترکیبی آلی اندازه گیری می شوند، کاهش می دهد.

برای مقایسه ی بهتر یک انجین گازی با مخلوط کردن سوخت پیش از احتراق، نصف یک ژنراتور معمولی نیروگاهی اکسیدهای نیتروژن تولید می کند. میکروتوربین 65 کیلوواتی کپستون (با نرخ تولید حرارت 11800 Btu/kWh LHV) در حدود 9 ppmvd اکسیدهای نیتروژن ،قسمت کوچکی از آلودگی یک توربوژنراتور نیروگاهی، تولید می کند.

در مجموع، میکروتوربینها بازده بیشتری دارند بدون اینکه به فیلترهای گران فعال نیاز داشته باشند. آلودگی کمتر کلید فهمیدن این نکته است که چرا شرکتهای نفت و گازی ،که به دنبال اکتشاف نفت از لایه های ماسه ای هستند، 10 دستگاه میکروتوربین کپستون سی.65 با آلودگی کم در ماه آگوست سفارش داده اند تا از آنها را به عنوان تولیدکننده ی اصلی انرژی در تأسیسات خود در ایگل فورد(جنوب تگزاس) سفارش بدهند.

منبع

http://www.powermag.com/microturbine-technology-matures/

ترانسفورماتورهای اصلاح شده بر اساس کی فاکتور

https://s18.picofile.com/file/8440412626/0222.jpg

رضاکیانی موحد

با نفوذ گسترده ی قطعات الکترونیک قدرت (دیودها، تریستورها و غیره) در دستگاه ها و تجهیزات صنعتی، افزایش هارمونیک های تزریق شده توسط این قطعات به شبکه ی قدرت به یکی از مشکلات عمده ی شرکتهای توزیع انرژی الکتریکی تبدیل شده است.

هارمونیکها اثرات نامطلوبی بر روی شبکه و مصرف کنندگان دارند که از جمله ی آنها می توان به گرم کردن ترانسفورماتورها اشاره کرد. هنگامی که ترانسفورماتوری یک بار غیرخطی (یو.پی.اس، چراغهای کم مصرف، راه اندازها و کنترل کننده های دور موتورهای الکتریکی و غیره) را تغذیه می کند هارمونیک ایجاد شده توسط بار غیرخطی سبب می شود که بهره بردار مجبور شود توانی کمتر از توان اسمی ترانسفورماتور از آن بکشد تا از داغ شدن بیش از حد و آسیب رسیدن به عایقهای سیم پیچ ها جلوگیری کند. جریانهای ناشی از هارمونیکها سبب می شود که تلفات ترانسفورماتور بالا رفته و حرارتی بیش از حد لازم تولید شود. به همین دلیل و به منظور تصحیح توانی که می توان از یک ترانسفورماتور در حالتی که بارهای غیرخطی را تغذیه می کند گرفت، عاملی به نام K تعریف شده است. کی فاکتور را می توان به عنوان وزن جریانهای هارمونیک تعریف کرد. اگر یک بار خطی توسط ترانسفورماتور تغذیه شود کی فاکتور آن را برابر با یک تعریف می کنیم. هر چه بار غیرخطی جریانهای هارمونیک بیشتری بکشد، کی فاکتور آن بالاتر می رود. محاسبه ی کی فاکتور سبب می شود که مصرف کننده بتواند ترانسفورماتوری مناسبتر و با توانی بالاتر را برای مصارف خود سفارش بدهد.

برای محاسبه ی کی فاکتور در ابتدا باید جریانهای هارمونیک توسط دستگاه تحلیل کننده ی هارمونیک اندازه گیری شود. سپس جریانها به توان دو رسیده و پس از ضرب شدن در مربع هارمونیک این اعداد با هم جمع خواهند شد. به عنوان مثال اگر یک جریان دارای 10% جریان هارمونیک سوم، 5% جریان هارمونیک پنجم و 3 % جریان هارمونیک هفتم باشد کی فاکتور آن به صورت زیر محاسبه خواهدشد:


مقدار ضریب تصحیح که باید مصرف کننده در توان نامی ترانسفورماتور خود ضرب کند از روی اطلاعات سازنده ی ترانسفورماتور و بر اساس مقدار کی فاکتور محاسبه شده توسط مصرف کننده به دست می آید. برای مقاصد عملی باید کی فاکتور در یک دوره ی بلند مدت اندازه گیری شود و پس از آن نیز همواره پایش شود.

امروزه ،برای کمک کردن به خریداران در انتخاب ترانسفورماتور مناسب، بعضی از سازندگان ترانسفورماتور تولیداتشان را بر اساس کی فاکتور به بازار عرضه می کنند. این ترانسفورماتورهای جدید قادر به تحمل حرارت اضافی تولید شده توسط جریانهای هارمونیک هستند به شرطی که کی فاکتور مصرف کننده از مقداری که سازنده در نظر گرفته است بیشتر نشود. در این نوع ترانسفورماتورها مصرف کننده نیازی به استفاده از ضریب تصحیح برای کاهش توان خروجی ترانسفورماتور ندارد چرا که هدف از ساخت این گونه ترانسفورماتورها محاسبه ی کی فاکتور بارهای غیرخطی و ساخت ترانسفورماتوری مناسب برای آن می باشد. استفاده از ترانسفورماتورهای جدید اقتصادی تر از خریداری یک ترانسفورماتور معمولی ولی بزرگتر می باشد. ترانسفورماتورهای اصلاح شده بر اساس کی فاکتور برای کی فاکتورهای 4،9،13،20،30،40،50 ساخته می شوند.

علاوه بر صرفه ی اقتصادی، استفاده از ترانسفورماتورهای اصلاح شده بر اساس کی فاکتور مزیتهای دیگری نیز بر ترانسفورماتورهای عادی دارند. در صورت وجود جریانهای هارمونیک ،به دلیل اندازه ی بزرگتری که باید برای ترانسفورماتورهای عادی در نظر گرفت، سطح جریان اولیه نسبت به ثانویه باید بالاتر در نظر گرفته شود و اگر سطح حفاظت کاهش بیابد ممکن است که جریان هجومی ترانسفورماتور سبب تریپ دادن رله های اضافه جریان شود.

در جدول زیر انواع ترانسفورماتورهای اصلاح شده را بر اساس کی فاکتور بر حسب نوع بار و مقدار کی فاکتور ملاحظه می کنید:

بار

کی فاکتور

لامپ کم مصرف، یو.پی.اس با فیلتر هارمونیک، جوشکاری با قوس الکتریکی، کوره های القایی، پی.ال.سی و کنترل کننده های صنعتی

4

تجهیزات مخابراتی، یو.اس.پی بدون فیلتر، تجهیزات اتاق عمل، تجهیزات آزمایشگاهی، تجهیزات آموزشی

13

ابرکامپیوتر، راه انداز و کنترل کننده ی دور موتور، تجهیزات بیمارستانی

20

 

 

سیستم کنترل دور وارد لئونارد

https://s18.picofile.com/file/8440412626/0222.jpg

رضاکیانی موحد


تا قبل از اینکه کنترل کننده های دور الکترونیکی به صورت گسترده وارد بازار شوند موتورهای القایی 3 فاز در کاربردهایی با دور متغیر جایی نداشتند. هر چند که این گونه موتورها دارای ساختمانی ساده و در نتیجه ارزان قیمت هستند اما کنترل دور آنها تنها با تغییر قطبها یا تغییر فرکانس منبع تغذیه صورت می گیرد که این موارد کنترل دور موتورهای القایی را پر هزینه و در مواردی غیرممکن می کند.

در عوض، موتورهای جریان مستقیم ساختمانی پیچیده دارند، هزینه ی ساخت و نگهداری آنها بالاست و نیاز به تعمیرات دوره ای بیشتر از موتورهای القایی پیدا می کنند. اما مزیت موتورهای جریان مستقیم نسبت به موتورها القایی در این است که سرعت (و گشتاور) آنها را می توان به راحتی کنترل کرد.

یکی از مهمترین و پر کاربردترین روشهای کنترل دور موتور جریان مستقیم روش کنترل دور در قرن گذشته وارد لئونارد می باشد. این روش در سال 1891 توسط مهندس آمریکایی به همین نام اختراع شد و حتی تا به امروز نیز می توان بازمانده های آن را در بعضی از کارخانه های صنعتی پیدا کرد.

اجزای اصلی سیستم واردلئونارد عبارتند از یک منبع قدرت، ژنراتور تحریک و یک موتور جریان مستقیم. منبع قدرت یک ژنراتور جریان مستقیم است که از یک منبع خارجی (موتور دیزل، موتور بخار، موتور الکتریکی و غیره ) تحت سرعتی ثابت نیرو می گیرد. ولتاژ خروجی منبع قدرت به آرمیچر موتور جریان مستقیم (شانت) اعمال می شود. ژنراتور تحریک یک ژنراتور جریان مستقیم کوچک است که از همان منبع خارجی که به منبع قدرت متصل شده است می گیرد و وظیفه دارد تا جریان تحریک ژنراتور جریان مستقیم را تأمین کند. جریان تحریک را می توان توسط یک مقاومت متغیر از صفر تا 100 درصد تغییر داد و بدین وسیله ولتاژ خروجی ژنراتور جریان مستقیم را کنترل و تنظیم کرد.

 

اجزای اصلی سیستم واردلئونارد- برای تغذیه ی سیم پیچهای میدان هر 3 ماشین از منبع جریان خارجی استفاده شده است.

 

اجزای اصلی سیستم وارد لئونارد. برای تغذیه سیم پیچهای میدان ماشینها از خروجی خود ژنراتور DC استفاده شده است.

اجزای اصلی سیستم واردلئونارد. برای تغذیه سیم پیچ میدان موتور جریان مستقیم از یک زنراتور dc کوچک استفاده شده است.

محور موتور جریان مستقیم به بار اتصال پیدا می کند و گشتاور خروجی آن سبب چرخش محور مکانیکی بار می گردد. همان  طور که گفته شد ولتاژ آرمیچر آن توسط ژنراتور جریان مستقیم و جریان تحریک آن یا به صورت جداگانه یا از طریق ژنراتور تحریک تأمین می شود. با این پیکربندی می توان سرعت موتور (و در نتیجه سرعت بار) را با تغییر جریان تحریک ژنراتور تغییر داد. در این روش برای به دست آوردن گشتاور مکانیکی به 3 وسیله (به جای یک موتور) نیازمندیم. از این رو روش کنترل واردلئونارد روشی است که ملاحظات اقتصادی در آن اولویت اول نمی باشد. هزینه های نگهداری، تعمیر یاتقانها، زغالها و... این سیستم را پرهزینه می کنند.

مزیت اصلی سیستم وارد لئونارد راه اندازی نرم و کنترل سرعت خوب حتی در دورهای پایین است. سیستمهای کنترل دور مبتنی بر رئوستا هیچگاه چنین راه اندازی نرمی را برای موتورهای جریان مستقیم فراهم نمی کنند.

سیستم وارد لئونارد دو نوع مختلف دارد:

الف کنترل ولتاژ موتور

در این روش جریان تحریک موتور جریان مستقیم ثابت نگه داشته می شود و با تغییر جریان تحریک ژنراتور ولتاژ خروجی آن و در نتیجه سرعت موتور جریان مستقیم تغییر می کند.

ب- کنترل تحریک موتور

با کم کردن جریان تحریک موتور می توان سرعت آن را بالابرد. در این روش ولتاژ ورودی موتور را به وسیله ی ثابت نگه داشتن تحریک ژنراتور ثابت نگه می دارند و جریان تحریک موتور را کم می کنند. در نتیجه با افزایش سرعت موتور گشتاور خروجی آن کاهش می یابد.

هرچند که امروزه در بیشتر صنایع کنترل کننده های تریستوری جایگزین سیستم وارد لئونارد شده اند اما در گذشته در مواردی مانند جرثقیلها، بالابرها، برجک توپ کشتی ها، لکوموتیوها و پرسها به صورتی گسترده ای از این سیستم استفاده شده است.