برق-قدرت

برق-قدرت

اینجا فقط از برق و الکترونیک و کامپیوتر حرف می زنیم
برق-قدرت

برق-قدرت

اینجا فقط از برق و الکترونیک و کامپیوتر حرف می زنیم

طراحی آسانسور با رویکرد دیجیتال، قسمت اول


https://s18.picofile.com/file/8440412626/0222.jpg

عموما کسی که می خواد یه مدار فرمان طراحی کنه اول از پروسه ی مورد نظرش سوال می کنه، بعد که چم و خم کار رو بررسی کردشروع می کنه به طراحی مدار فرمان. بیشتر کار هم به صورت شهودی و بر اساس تجربه صورت می گیره. من در یک سلسله پست (که احتمالا 4 یا 5 قسمت بشه) می خوام طراحی شهودی رو با طراحی دیجیتال مقایسه کنم تا ببینم اگه از اول بر اساس یه مدار منطقی بریم جلو چقدر میتونیم به طراحی یه مدار فرمان خوب نزدیک بشیم.

برای مثال از طراحی آسانسور شروع می کنیم. مدار فرمان آسانسور مدار فرمان نسبتا پیچیده ای هست و به همین دلیل یه قسمتهایی از مدارات رو حذف می کنم تا از هدف اصلی این بحث خیلی دور نیفتم. پس:

  1. آسانسور ما در هر طبقه دارای یه سنسور هست که نشون دهنده ی وارد شدن آسانسور به طبقاته. از وقتی که آسانسور وارد یه طبقه بشه تا زمانی که به صورت کامل درون اون طبقه قرار بگیره (یعنی در اتاقک آسانسور روبروی در هر طبقه قرار بگیره) اتفاقی نمیافته. وقتی که اتاقک آسانسور کاملا روبروی در خروجی قرار گرفت اون وقته که سنسور اون طبقه فعال می شه. منظورم اینه که ما حالتی نداریم که هیچ یکی از سنسورهای طبقات فعال نباشند و مثلا اتاقک آسانسور بین طبقات باشه. پس یا آسانسور در طبقه اول هست یا دوم یا سوم و ...... اسم این سنسورهای رو میذارم کلید s. فرض می کنیم که این کلیدها همه شون نورمالی اوپن هستند. یعنی وقتی اتاقک آسانسور به یه طبقه برسه سنسورش بسته میشه و وقتی از اون طبقه خارج بشه سنسورش باز میشه.
  2. برای هر طبقه یه پوش باتون در بیرون اتاقک آسانسور و روی دیوار قرار داره که با فشار دادن اون پوش باتون، اتاقک آسانسور باید در اون طبق توقف بکنه. چون وقتی که پوش باتون ول بشه اطلاعات از بین میره ، پوش باتون رو به یه کنتاکتور وصل می کنیم و از کنتاکتهای اون کنتاکتور استفاده می کنیم به جای خود اون پوش باتون.هر کنتاکتوری برای وصل ماندن از کنتاکت نگه دارنده ی خودش استفاده می کنه. اسم پوش باتونها و کنتاکتورها رو  گذاشتمb.  به ازای هر پوش باتون در بیرون آسانسور یکی هم داخل خود اتاقک آسانسور هست که موازی با پوش باتون بیرون اتاقک هست ولی من برای ساده تر شدن نقشه اون رو حذفش کردم.
  3. مدار فرمان آسانسور سه تا فرمان کلی داره: بالا، پایین و توقف. این فرمانها اعمال میشن به یه مدار قدرت چپگرد-راستگرد معمولی که نقشه ش رو میتونید از هر جایی بردارید. یه نمونه ش اینجاست. وقتی که پوش باتون یه طبقه زده بشه اتاقک آسانسور حرکت می کنه تا برسه به اون طبقه. در اونجا سنسور طبقه فعال میشه و فرمان قطع حرکت رو صادر می کنه که در نتیجه باید کنتاکتورهای چپگرد-راستگرد هر دو غیر فعال بشن و از کار بیفتن.
حالا بریم سراغ طراحی یه مدار فرمان در ساده ترین وضعیت یعنی آسانسور برای دو طبقه.
به صورت شهودی میدونیم که اگه اتاقک آسانسور در طبقه ی اول باشه و پوش باتون طبقه ی دوم (b2) فشار داده بشه آسانسور باید بره بالا. از طرفی هم وقتی که اتاقک آسانسور در طبقه ی دوم باشه و پوش باتون طبقه ی اول (b1) فشار داده بشه آسانسور باید بره پایین. پس داریم:
https://s18.picofile.com/file/8435328950/01.jpg
حالا بریم سراغ تحلیل مدار فرمان به روش مدار منطقی (دیجیتال):
ما 4 تا متغیر داریم که در مجموع 16 حالت رو بوجود میارن. این 16 حالت باید برای ما وضعیت دو تا خروجی رو مشخص بکنن. جدول صحت  متغیرها و خروجی ها به صورت زیر هستش:
https://s18.picofile.com/file/8435329118/0222.jpg

 حالا ستونهای up و down رو چه جوری پر بکنیم؟ اول بریم سراغ 4 مینترم آخر. همه رو برای هر دو ستون صفر می کنیم چون اصولا وقتی دکمه های b1 و b2 فشار داده نشده اند نیازی نداره تا آسانسور از جاش تکون بخوره. از طرف دیگه مینترمهایی که s1 و s2 با هم صفر هستند هم توضیح دادیم که غیر ممکن هستند. یعنی ممکن نیست که اتاقک آسانسور توی هیچ کدوم از دو طبقه نباشه. پس اونها رو هم صفر می کنیم. در مینترمهای 7ام ، 11ام و 15ام هم هر دو کلید 1 هستند که غیر ممکنه اتاقک آسانسور همزمان در هر دو طبقه باشه. پس داریم:

https://s19.picofile.com/file/8435329026/022.jpg
حالا بریم سراغ پر کردن ستون بالا یا up. برای پر کردن این ستون هر جا که کلید s2 وصل هست رو صفر می کنیم. چرا؟ چون وقتی که کلید s2 وصل هست یعنی اتاقک آسانسور در طبقه ی دوم هست و چون ساختمون دو طبقه بیشتر نداره پس در این صورت دیگه حرکت آسانسور به سمت بالا بی معنی می شه. یعنی جدول به صورت زیر در میادش:
https://s19.picofile.com/file/8435328992/033.jpg
در ادامه هر جا که b2 برابر با 1 شده باشه رو در ستون up برابر با 1 قرار می دیم. یعنی پوش باتون b2 فشار داده شده و اتاقک آسانسور در طبقه ی اول هست ودر نتیجه اتاقک آسانسور باید بره بالا. پس داریم:
https://s19.picofile.com/file/8435328976/04.jpg

با همین روش ستون پایین  یا down رو پر می کنیم با این تفاوت که هر جا s1 فعال بود رو باید صفر کنیم چون یعنی آسانسور در طبقه ی اول هست و پایین رفتنش معنی نداره. بعد هر جا که پوش باتون b1 برابر با 1 بود رو برابر با 1 قرار می دیم. یعنی:
https://s19.picofile.com/file/8435328968/05.jpg
حالا باید جدول زیر رو یه بار با مینترمهای نتیجه شده در دو ستون آخر یه بار برای ستون up و یه بارم برای ستون down پر بکنیم:
https://s18.picofile.com/file/8435329100/06.jpg
برای ستون up خواهیم داشت:
https://s18.picofile.com/file/8435329084/07.jpg
ساده شده ی جدول بالا می شه:
up=s1.s2'.b2
 این دقیقا یعنی همون مدار طراحی شده در شکل اول.
جدول ستون down به صورت زیر هستش:
https://s19.picofile.com/file/8435329076/08.jpg
ساده شده ی جدول بالا می شه:
down=s1'.s2.b1
حالا مدار این دو تا خروجی رو که رسم کنیم میشه شکل زیر:
https://s18.picofile.com/file/8435329050/09.jpg
این مدار فرمان در ظاهر با مداری که در ابتدای بحث طراحی کردیم فرق داره. کنتاکت بسته ی کلید s2 به مسیر کنتاکتور up اضافه شده و کنتاکت بسته ی کلید s1 به مسیر کنتاکتور down اضافه شده. ولی اگه دقت کنیم این دو کنتاکت بسته رو میشه حذف کرد و به مدار فرمان اول رسید به این علت که وقتی اتاقک آسانسور توی طبقه ی اول باشه کنتاکت بسته ی s2 همچنان بسته می مونه و بود و نبودش در مدار تفاوتی ایجاد نمیکنه. همین مسئله د رباره ی کنتاکت بسته ی s1 هم صادق هست. یعنی وقتی که اتاقک آسانسور توی طبقه ی دوم باشه این کنتاکت بسته می مونه و بود و نبودش فرقی ایجاد نمیکنه. پس در عمل هر دو مدار هم ارز همدیگه هستند و با طراحی دیجیتال می تونیم به همون مداری برسیم که از روشهای معمولی طراحی مدار فرمان به دست میاد.
بحث رو در قسمت بعدی با طراحی مدار فرمان  آسانسور براییه  ساختمون سه طبقه ادامه می دیم.
پی نوشت: اگه ساده کردن مدارات منطقی از طریق جدول رو بلد نیستید باید به جلد اول کتاب مدار منطقی موریس مانو مراجعه کنید و به دقت چند فصل اول رو مطالعه کنید.


ملاحظات طراحی و ساخت ترانسفورماتورهای WTSU


https://s18.picofile.com/file/8440412626/0222.jpg

مایک دیکینسون

مقدمه

تبدیل انرژی باد به توان الکتریکی یکی از صنایعی است که با سرعت در حال رشد است. تنها در آمریکا، توان حاصله از نیروگاه های بادی در 5 سال به طور متوسط گذشته 29 درصد رشد کرده است و اکنون این انرژی بیش از یک درصد انرژی مورد نیاز این کشور را تأمین می کند.

مانند دیگر سیستمهای انتقال و پخش توان الکتریکی، ترانسفورماتورهای قدرت قلب تولید انرژی توسط نیروگاه های بادی هستند. طراحی اولیه یک ترانسفورماتور می تواند در سوددهی نیروگاه های بادی تأثیری به سزا داشته باشد و بنابر این فرض می شود که طراحی و ساخت ترانسفورماتورها ، به ویژه برای استفاده در نیروگاه های بادی شامل ترانسفورماتورهای افزاینده توربینهای بادی، اهمیتی حیاتی دارد.

با اینکه تکنولوژی تهیه انرژی از باد در چند سال گذشته بهبود بسیار یافته است، چند مشکل مهم در طراحی، کنترل و بهره برداری هنوزهم حل نشده باقی مانده اند. اگر این موارد به صورتی شایسته در زمان صحیح عنوان نشوند، ممکن است که موجب اختلال های زیادی در سیستم ،به ویژه هنگامی که نیروگاه به شبکه سراسری متصل می شود، بشوند.

توربین بادی

توربین بادی نشانه ای برجسته از بازار بزرگ انرژی های قابل تجدید می باشد. باد پره های توربین را می چرخاند، که آن هم محور یک ژنراتور را به حرکت در می آورد و برق تولید می کند. یک ترانسفورماتور محلی برای افزایش ولتاژ تولید شده لازم است تا برق از طریق خطوط انتقال و توزیع به مصرف کننده عمومی انتقال یابد. این توربینها عموما هنگامی که سرعت باد در حدود 8 مایل بر ساعت یا بیشتر است برق تولید می کنند. هنگامی که سرعت باد از 55-60 مایل بر ساعت بیشتر می شود این توربینها به دلایل امنیتی خاموش می شوند. توربینهای بادی مدرن معمولا از یک روتور و 3 پره بلند استفاده می کند که قطری بین 40 تا 80 متر دارند تا بتوانند بیشترین انرژی ممکن را از باد دریافت کنند. پره ها را در زوایای مختلف قرار می دهند تا بتوانند خود را با سرعتهای مختلف باد هماهنگ کنند، و ژنراتور و پره های می توانند برای قرارگرفتن در جهت صحیح باد بچرخند. توربین های بادی بر روی برجهایی با ارتفاع 40 تا 100 متر نصب می گردند تا بتوانند از باد قدرت بگیرند. این توربینها در اندازه های مختلف ساخته می شوند و می توانند در تأسیسات بزرگ و کوچک به کار گرفته شوند. یک توربین کوچک ،با توانی در حدود 300 کیلووات، را می توان برای مصارف گوناگونی چون شارژ باتری، برق رسانی به خانه های موقت، ایستگاه های تلفن سیار، مزارع یا کارخانه ها بکار گرفت. توربینهای بکارگرفته شده در نیروگاه های بادی ممکن است که با ظرفیت 500 کیلووات با بیشتر باشند. این توربینها اغلب در مزارع بادی یا نیروگاه های بادی برای تغذیه برق شبکه کنارهم نصب می شوند. با نصب یک مزرعه بادی امکان دارد تا برق به صورت اقتصادی تری و با ظرفیت بیشتر تولید شود. این امر همچنین تعمیرات و بهره برداری از آنها را مقرون به صروف می سازد.

چرا ترانسفورماتورهای افزاینده؟

یک ترانسفورماتور افزاینده جهت توربین بادی (WTSU) نقشی حیاتی در تبدیل سطح ولتاژ خروجی توربین به سطح انتقال و عبور از شبکه های انتقال تا رسیدن به مصرف کننده بازی می کند. ولتاژ خروجی توربینهای بادی نوعا بین 480 تا 690 ولت است. این ولتاژ به ترانسفورماتور WTSU داده میشود و به ولتاژی بین 13.8 تا 46 کیلوولت تبدیل می شود. نقش این ترانسفورماتورهای حیاتی است  و لازم است که طرحی قوی داشته باشند. ترانسفورماتورهای امروی باید از پس نیازهای مختلفی چون مسائل زیر برآیند:

  • بارهای گوناگون و مختلف.
  • بارهای دارای هارمونی و غیرسینوسی تولید شده توسط عناصر کنترلی الکترونیک و ژنراتورها.
  • حفاظت در برابر ولتاژ بالا/پایین یا اضافه بار.
  • توانایی تحمل جریانهای گذارا و خطاها.

نیاز به طراحی مخصوص و ملاحظات ساخت

محلهای دارای باد مناسب اغلب در مکانهای دورافتاده هستند و مقادیر مختلفی از انرژی را دریافت می کنند. این عوامل باد را به یک منبع انرژی به شدت دارای نوسان تبدیل کرده است که خروجی آن می تواند تا 25 درصد بازی کند. در حدود 10 درصد از زمان کار توربین، باد می تواند توربین را با 5 تا 20 درصد ظرفیت نامی اش به حرکت درآورد. این تغییرات می تواند تأثیر منفی بر روی شبکه بگذارد. ترانسفورماتورهای توزیع و ترانسفورماتورهای قدرت معمولا در حوالی بار کامل خود بکارگرفته می شوند. این چنین است که فشارهای حرارتی بر روی عایقهای این نوع ترانسفورماتورها  طبیعتا بیشتر می شود. ترانسفورماتورهای WTSU دچار چنین اشکالی نمی شوند اما بار متغیر آنها مشکلات دیگری را برایشان ایجاد می کند مانند:

تلفات هسته

تلفات هسته می تواند به صورت یک عامل مهم اقتصادی در زمانی که ترانسفورماتورها بی بار هستند یا بارکمی دارند درآید. استفاده از ترانسفورماتور با 30 تا 35 درصد بار کامل فرمولهای معمولی تخمین قیمت را به هم می ریزد.

نوسانات حرارتی

کم و زیاد شدن بار فشار حرارتی زیادی را به سیم پیچهای ترانسفورماتور، سازه های نگهدارنده، درزگیرها و نشت بندها وارد می کند. همچنین، نوسانات حرارتی موجب ایجاد گاز نیتروژن در روغن ترانسفورماتور شده که در زمان خنک شدن روغن به صورت حباب در آمده و در اطراف عایقها و سیم پیچها تجمع می کنند که سبب تخلیه جزئی و خراب شدن عایقها می شوند. ترانسفورماتورهای توزیع و قدرت نمی توانند با این مشکل به خوبی رویاروی شوند و حوادث ناشی از عایقها در آنها دیده می شود.

راه حل: ترانسفورماتورها سفارشی ساخته شوند

یک ترانسفورماتور سفارشی برای نیروگاه بادی می تواند از ابتدا با در نظر گرفتن مشکلات خاص این نیروگاه ها طراحی شود. استفاده از هسته های صلیبی شکل، سیم پیچ ها و سازه ی قوی تر، درزگیرها و نشت بندهای مخصوص و ابزارهای حفاظتی که از ایجاد نقاط داغ و در نتیجه تخلیه جزئی جلوگیری می کنند می توانند سبب افزایش طول عمر ترانسفورماتور و بهبود کارایی آن شوند.

مانند بیشتر ترانسفورماتورهای یکسوساز، ترانسفورماتورهای WTSU باید برای مقابله با هارمونیها و اضافه بار طراحی شوند تا از انتقال هارمونی ها بین اولیه و ثانویه ترانسفورماتور جلوگیری کنند.

مترجم رضا کیانی موحد

منبع

http://ezinearticles.com/?Design-and-Construction-Considerations-For-WTSU-Transformers&id=3529140

ترانسفورماتورهای مدرن


https://s18.picofile.com/file/8440412626/0222.jpg

 

مایک دیکینسون

ترانسفورماتورهای قدرت قلب شبکه های انتقال و توزیع می باشند و رقابت فزاینده بین تولیدکنندگان انرژی فشاری به سازندگان ترانسفورماتورها وارد می کند تا قابلیت اعتماد آنها را بیشتر کرده و قیمتشان را کاهش دهند.

ساخت ترانسفورماتورهای قدرت در اواخر قرن هجدهم امکان پذیرشد و توسعه یافت. از آن زمان تا به امروز مفاهیم اولیه ترانسفورماتورها همچنان ثابت مانده اند. به هرحال، تکنیکهای طراحی و ساخت آنها برای افزایش بازده و کاهش قیمتشان بهبود یافته اند.

چرا به طرح های جدیدتر برای ساخت ترانسفورماتورهای نیازمندیم؟

به همراه برتری طراحان و با توجه به هزینه های توسعه و تحقیق صرف شده، ترانسفورماتورهای مدرن بسیار کوچکتر و ارزانتر هستند و قادرند تا بازده قابل توجهی را با قیمت تمام شده کمتر انرژی ارائه کنند.

به ویژه برای کشورهایی مانند آمریکا، ترانسفورماتورهای مدرن می توانند نقشی اساسی در کاهش تلفات شبکه بازی کنند. این کشور تنها 4 درصد جمعیت جهان را در خود جای داده است اما 25درصد گازهای گلخانه ای جهان را تولید می کند. آمریکا بیش از 9200 نیروگاه دارد که بیشتر آنها کهنه و قدیمی می باشند و به دلیل بازده اندکشان نیاز است تا جایگزین شوند. از سال 1982 تا کنون ، رشد تقاضای برق در آمریکا سالانه 25 درصد بیش از شبکه های قدرت بوده است درحالیکه ترانسفورماتورهای موجود مقدار زیادی از انرژی الکتریکی تولید شده را هدر می دهند.

ترانسفورماتورهای بهتر و استفاده از فولادهای بهتر ،به عنوان هسته ترانسفورماتور، می تواند به صورتی مؤثر تلفات بی باری ترانسفورماتور را کاهش دهد که یکی از تلفات اصلی انرژی در ترانسفورماتورها می باشد. تلفات بی باری با جایگزینی فولاد با فلزات غیرمتبلور می تواند حتی کاهش بیشتری نیز در پی داشته باشد.

انواع طرح ها

طول عمر یک ترانسفورماتور به عواملی بستگی دارد که مهمترین آنها کیفیت عایق بندی ترانسفورماتور می باشد. دو چیز که عایقهای یک ترانسفورماتور را فرسوده می سازد عبارتند از رطوبت و حرارت بیش از حد. با توجه به این دو عامل، طرح های مدرن بر محافظت از عایق بندی ترانسفورماتور تکیه می کنند. بعضی از این طرح ها عبارتند از روش باز(Open method)، تانکهای درزگیری شده(Sealed Tank Design)، روش نگهدارنده(Conservator Type Design) و تنظیم خودکار فشار گاز(Automatic Gas Pressure Design).

گرایش به ترانسفورماتورهای مدرن

به همراه قیمت رو به رشد انرژی و فشار در جهت کاهش قیمت ترانسفورماتورها، در طرح های جدید بر تکنولوژی های ترکیبی برای رسیدن به تلفات کمتر تمرکز شده است. بیشتر ترانسفورماتورها زمانی به حداکثر بازده خود می رسند که با بار 100 درصد کار کنند. اما بار 100 درصد در شبکه یک فرض ایده آل است و در عمل بیشتر ترانسفورماتورها با باری بسیار کمتر از بار 100درصد کار می کنند. با تغییر بار، بازده ترانسفورماتور هم تغییر می کند. گفته می شود ترانسفورماتورهای جدید 30 تا 50 درصد بازده بیشتر دارند و تلفات آنها در بار 35 درصد 30 درصد کمتر از ترانسفورماتورهای سنتی است.

گرایش صنعت ترانسفورماتورها را به مسیری می راند که مزیت های بیشتری در بازده و هزینه صرفه جویی شده داشته باشند.

ترکیب کیسه هوا در منبع انبساط

ترانسفورماتورهای جدید با مخازن نگهدارنده از مخازن انبساط دارای کیسه هوا استفاده می کنند که رطوبت خارج شده از روغن ترانس را در هنگام تماس با هوا جذب می کند.

هوش مصنوعی در مراحل طراحی

بسیاری از ابزارهای جدید طراحی ترانسفورماتورها از تکنیکهای هوش مصنوعی در ترکیب با روش عناصر محدود(finite element method) بهره می گیرند. امروزه، هوش مصنوعی به صورتی گسترده برای مدلسازی غیرخطی و سیستمهای مقیاس بزرگ ، به ویژه هنگامی که روشهای ریاضی مرسوم در حل مسائل درمی مانند یا اصلا وجود ندارند، بکارگرفته می شوند. به علاوه، هوش مصنوعی در حل مسائل بهینه سازی بازده محاسباتی بالایی دارد. به عبارت دیگر، روش عناصر محدود ،به ویژه، ظرفیت دارد تا با مسائل هندسه مختلط سرو کله بزند و به جوابهایی با دقت و ثبات برسد.

عایقهای ابداعی

فرسودگی عایقها در اثر حرارت سبب کاهش استقامت عایقی و در نتیجه کاهش پایداری در برابر اتصال کوتاه می شود. عایقهای جدید دورگه حرارت بالا به هرحال می توانند تلرانس حرارتی عایق را بهبود بخشند، مقاومت مکانیکی را افزایش دهند و هزینه نگهداری و تعمیرات ترانسفورماتور را کاهش دهند. عایقهای دورگه شامل لایه هایی از کاغذ سلولزی و کاغذ آرامید هستند. روشهای بهبود دیگر که درجهان رایج شدند ،شامل کاهش تعداد مجراهای بین لایه ها و تقویت قاب ترانسفورماتور، توانایی مقاومت در برابر جریان اتصال کوتاه را بیشتر می کند. انتظار می رود تا قابلیت اعتماد و طول عمر بیشتر با بکارگیری عایقهای جدید در ترانسفورماتورها به دست آید و صرفه جویی بیشتری برای تأسیسات الکتریکی به همراه داشته باشد.

فواید طرح های جدید

برتری تدریجی و رشد یابنده طرح های نه تنها به خاطر نیازهای طبیعی بلکه به سادگی به دلیل بازده بیشتر این ترانسفورماتورها می باشد. فواید این طرح ها عبارتند از:

طول عمر بیشتر

هزینه کمتر انرژی به دلیل کاهش تلفات

کاهش تولید گازهای گلخانه ای

استفاده مناسبتر از انرژی، تولید بیشتر با انرژی کمتر

برای آگاهی بیشتر از این طرح ها می توانید به اینجا مراجعه کنید.

منبع: 

http://ezinearticles.com/?Modern-Transformer-Design&id=4679536 

مترجم رضاکیانی موحد